Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 21

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Variation of crystallinity and secondary ion quantity of uranium particles with heating temperature of Sample preparation

Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka

KEK Proceedings 2022-2, p.108 - 113, 2022/11

Automated Particle Measurement (APM) is the first measurement of environmental sample for safeguard purpose. APM tells us the number of particles in sample, their enrichment and their location. Precision and accuracy of APM is easily affected by particle condition. We have investigated how influential baking temperature in sample preparation are for uranium secondary ion quantity, uranium hydride generation and particle crystallinity. Our experimental results showed that baking temperature of 800$$^{circ}$$C reduced uranium secondary ion quantity to 33% compared with baking at 350$$^{circ}$$C. Uranium hydride generation ratio of the sample baked at 850$$^{circ}$$C was also 4 times higher than the sample baked at 350$$^{circ}$$C. Baking at 850$$^{circ}$$C raised only crystallinity of uranium particles. Baking sample at too high temperature caused less uranium secondary ion generation and much more uranium hydride generation. It made precision and accuracy of APM worse. In our experiment, baking at 350$$^{circ}$$C is suitable for uranium particles in the safeguards sample.

Journal Articles

Preparation of the particles containing isotope reference uranium for the determination of the low abundant U isotope ratios

Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka

KEK Proceedings 2022-2, p.154 - 158, 2022/11

Precise determination of minor U isotopes ($$^{233}$$U and $$^{236}$$U) of particles from the safeguard environmental samples is powerful method for detecting the undeclared nuclear activities. In this study, preparation method of U particle was examined to utilize for the minor U isotope determination. The porous silica particles were used as the particle matrix and lutetium was mixed to the impregnation solution as U impregnation indicator for the particle picking. The result of the Scanning Electron Microscope indicated that the contacting the solution with Si particles overnight gently could produce the impregnated particles effectively rather than the mixing them with PFA stick.

Journal Articles

Chemical state analysis of uranium dioxide particles by micro-Raman mapping

Yomogida, Takumi; Kitatsuji, Yoshihiro; Miyamoto, Yutaka

KEK Proceedings 2022-2, p.148 - 153, 2022/11

The Research Group for Safeguards Analytical Chemistry is currently developing a method to analyze the chemical state of uranium particles in environmental samples collected at nuclear facilities using micro-Raman spectroscopy. The chemical state of uranium particles in environmental samples can be partially oxidized by long-term exposure to air. It is necessary to develop a method to analyze the chemical state of the entire particle. In this study, uranium dioxide stored under atmospheric conditions was analyzed by micro-Raman mapping. The Raman spectra showed that uranium peroxide was locally present in the UO$$_{2}$$ particle. The Raman peaks originating from the structure of UO$$_{2}$$ around 570 cm$$^{-1}$$ and 1150 cm$$^{-1}$$ could not be observed in the point analysis of the particle center. On the other hand, in mapping analysis, Raman peaks originating from the structure of UO$$_{2}$$ can be observed from the same particle, demonstrating that Raman mapping analysis is an effective method for analyzing the chemical state of the entire particle.

Journal Articles

Development of analytical techniques for safeguards environmental samples; Bulk analysis

Hirayama, Fumio; Kurosawa, Setsumi; Magara, Masaaki; Ichimura, Seiji; Kono, Nobuaki; Suzuki, Daisuke; Inagawa, Jun; Goto, Mototsugu; Sakurai, Satoshi; Watanabe, Kazuo; et al.

KEK Proceedings 2005-4, p.184 - 192, 2005/08

no abstracts in English

Journal Articles

Application of fission track method to environmental sample analysis for safeguards

Iguchi, Kazunari

Nihon Shashin Gakkai-Shi, 68(1), p.56 - 59, 2005/02

In order to detect undeclared activities of nuclear facilities, Japan Atomic Energy Research Institute (JAERI) has developed analytical methods for safeguards environmental samples. As for particle analysis of safeguards environmental sample analysis which can determine isotope ratios of nuclear materials for individual particles, secondary ion mass spectrometry (SIMS) is known as a powerful method. However, it is difficult to analyze particles having diameter below 1 $$mu$$m due to its detection limit. To overcome the problem, JAERI is developing an analytical method using fission track (FT) technique. The outline of the method is described in this report.

Journal Articles

Development of fission track-thermal ionization mass spectrometry method for safeguards environmental samples

Lee, C. G.; Iguchi, Kazunari; Inagawa, Jun; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki; Sakurai, Satoshi; Watanabe, Kazuo; Usuda, Shigekazu

Dai-26-Kai Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Nenji Taikai Rombunshu, p.171 - 178, 2005/00

Particle analysis by FT-TIMS method is effective for safeguards environmental samples because the isotope ratios of sub-micrometer particles can be determined. The FT-TIMS method developed by the authors, in which the particles are confined in the detector, has merits such as high detection efficiency and the possibility as a screening method for uranium particles according to their enrichment by controlling the etching time. However, it was found that a part of uranium particles contained in a detector may dissolve during the etching process of the detector. In order to overcome the problem, we are developing a novel sample preparing method in which the FT detector and the particle layer are separated. In the conventional FT sample of separated type, the detection process of particles of interest is time-consuming and complicated due to the discrepancy in position between tracks and particles. In contrast, the discrepancy was solved by fixing a part of a detector and a particle layer in our method, which improved the detection efficiency of particles containing fissile materials.

Journal Articles

INMM 44th Annual Meeting, 3; Environmental sample analysis for safeguards

Usuda, Shigekazu

Kaku Busshitsu Kanri Senta Nyusu, 32(10), p.5 - 6, 2003/10

no abstracts in English

Journal Articles

Development for ultra-trace analysis method of U and Pu in safeguards environmental samples at the clean facility

Takahashi, Masato; Magara, Masaaki; Sakurai, Satoshi; Kurosawa, Setsumi; Esaka, Fumitaka; Taguchi, Takuji; Takai, Konomi; Fukuyama, Hiroyasu; Lee, C. G.; Yasuda, Kenichiro; et al.

Dai-23-Kai Kaku Busshitsu Kanri Gakkai Nihon Shibu Nenji Taikai Rombunshu, 8 Pages, 2002/09

Based on the strengthen safeguard program of the IAEA to detect undeclared nuclear activities, the method of precise and accurate isotope ratio determination for uranium and plutonium in the environmental samples (cotton swipes) has been developed at JAERI. The samples should be treated in clean environment in order to secure the analytical reliability by eliminating external contamination from the samples containing trace amount of uranium and plutonium. Since the measurement by ICP-MS is favorable to bulk analysis from view points of analytical capacity and operation simplicity, we have studied sample preparation procedures for the trace amount of uranium and plutonium to be applied to ICP-MS. Up to the present, interfering factors involved during analytical processes and the ICP-MS measurement of uranium and plutonium were examined. As a result, uranium and plutonium isotope measurement more than 100 pg and 100 fg, respectively, became possible at JAERI clean facility. At presentation, other progress in the development will be reported.

Oral presentation

An Examination of environmental sample analyses for safeguard using multi-collector ICP-MS

Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka

no journal, , 

no abstracts in English

Oral presentation

Total evaporation for uranium particles generating much uranium hydride formation and isotopic ratio change

Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka

no journal, , 

Secondary ion mass spectrometry (SIMS) analysis of uranium particles for safeguards purpose consists of Automated Particle Measurement (APM) and Microprobe analysis. APM for safeguards sample includes 2400 measurements, each field is analyzed for short time. So, if a sample have particles which generate too much uranium hydride formation on their surface, the APM result, especially $$^{236}$$U abundance, is affected by uranium hydride formation. It causes inaccurate APM result. To investigate what percentage of the entire particle the particle surface causing ratio change account for, total evaporation measurement was implemented for standard uranium particle generating much uranium hydride formation on their surface and uranium isotopic ratio change during the total evaporation measurement was observed. Total evaporation experiment indicated that the number of secondary ions originated from particle surface accounted for 3.1% of all of number of ions sputtered from the entire particle. Based on the total evaporation result, APM conditions, primary beam intensity, measurement time and raster size, combined with the method manipulating particles under scanning electron microscope were optimized to reduce the hydride effect for APM result.

Oral presentation

Quantitative assessment of polyatomic interferences for the measurement of uranium and plutonium isotope ratios at ultra-trace level using MC-ICP-MS

Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka

no journal, , 

Formation of polyatomic interferences made of an atom of heavy element and atoms in plasma such as argon and oxygen is known to create problems for their measurements using ICP-MS. In this study, quantitative assessment of polyatomic interferences for the measurement of U and Pu isotope ratios at ultra-trace level using MC-ICP-MS was conducted. For U isotopes, significant polyatomic interferences caused by $$^{193}$$Ir$$^{40}$$Ar, $$^{194}$$Pt$$^{40}$$Ar and $$^{196}$$Pt$$^{40}$$Ar were observed at the mass of 233, 234 and 236, respectively. When 1 ppb of natural uranium solution (IRMM184) containing 0.4 ppb of Pt was measured, $$^{234}$$U/$$^{238}$$U isotope ratio was roughly estimated to be two-fold higher than certified value due to the interference. For Pu isotopes, small interference from Pb ($$^{204}$$Pb$$^{40}$$Ar) was observed at the mass of 244 while other obvious interferences were not found.

Oral presentation

Sensitive measurement of uranium isotope ratios by MC-ICP-MS

Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka

no journal, , 

Isotopic ratios of uranium particle provide us with the information on the nuclear activities such as enrichment and reprocessing. Precise determination of U isotopic ratios is difficult due to the low intensity of $$^{238}$$U measured by Faraday cup when pico-gram quantities of uranium was measured by MC-ICP-MS. In this study, the sensitive measurement of the 1-20 pg of uranium was examined. The solution was prepared by only 0.2 mL, which was one-tenth compared to the conventional method, to increase U concentration. Data acquisition was started from the beginning of the solution uptake and continued until all solution was exhausted. The isotopic ratios of uranium were calculated from the total counts of each isotope excepting the portion affected by air mixing at the beginning and end of sample introduction. Uranium isotopic ratios of CRM U015 and IRMM184 determined by this method examined in this study were agreed with the certified values within the uncertainties (2-sigma). The uncertainties obtained by this method were smaller than those by the conventional method.

Oral presentation

Preparation of uranium standard particles and isotope ratio analysis by secondary ion mass spectrometry

Tomita, Ryohei; Tomita, Jumpei; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka

no journal, , 

It is necessary to correctly calibrate the mass bias effect of uranium isotopes using uranium standard particles in the secondary ion mass spectrometry (SIMS) analysis. The preparation of uranium standard particles is mainly carried out by drying aerosols generated from uranium standard solutions in unique equipment and facility. This is the reason why only few types of commercial uranium standard particles are available. In this study, our purpose is to propose easier way to prepare uranium standard particle by immersing porous silicon particle in the uranium standard solution. Quality of this handmade uranium standard particles were evaluated by analyzing isotopic ratios using SIMS. The uranium isotopic standard solution ($$^{233}$$U/$$^{238}$$U=0.694, $$^{235}$$U/$$^{238}$$U=0.922) of 2.21 ppm was concentrated to 4.48$$times$$10$$^{2}$$ ppm, and mixed with porous silicon particle. Uranium isotopic ratios of handmade particles collected on a glassy carbon planchet were analyzed using LG-SIMS (IMS-1300HR$$^{3}$$, CAMECA). Analytical results of $$^{233}$$U/$$^{238}$$U and $$^{235}$$U/$$^{238}$$U agreed with the certified value of standard solution within the standard deviation (1$$sigma$$). This new particle preparation is effective to create standard particles without uranium aerosol, and the particles made by this method showed same isotopic ratios as standard solution in which porous silicon particles was immerged.

Oral presentation

Utilization of Secondary mass spectrometry (SIMS) in nuclear-related fields; Isotopic composition analysis of micron sized nuclear particles for nuclear safeguards

Tomita, Ryohei; Tomita, Jumpei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka

no journal, , 

We are applying a secondary ion mass spectrometer (SIMS) to measure the isotopic composition of micron-sized nuclear particles in environmental samples for safeguards purposes. International Atomic Energy Agency (IAEA) collects swipe samples taken from the walls and floors of nuclear facilities through on-site inspections, and analyzes uranium isotopic composition of these samples for confirming the absence of undeclared nuclear activity. As a member of IAEA network analytical laboratories (NWALs), our research group has not only reported the analytical results of isotopic composition of U and Pu in the inspection samples to IAEA, but also has been developed analytical techniques to precisely and accurately measure the isotopic composition of nuclear materials on the IAEA swipe samples. Our analytical activity at Clean Laboratory for Environmental Analysis and Research (CLEAR) in JAEA, and analytical techniques using SIMS are introduced.

Oral presentation

Development of isotopic analysis techniques for ultra-trace amounts of plutonium and uranium

Yasuda, Kenichiro; Suzuki, Daisuke; Tomita, Jumpei; Tomita, Ryohei; Miyamoto, Yutaka

no journal, , 

The safeguards environmental sample analysis by the IAEA requires the development of efficient methods for measuring isotope ratios of ultra-trace amounts of plutonium and uranium particles. We have applied fission track and alpha track techniques to identify of discrimination between plutonium and uranium particles and have successfully measured isotope ratios of the particles using a continuous heating method with a thermal ionization mass spectrometer (TIMS). This method made it possible to find particles containing plutonium and uranium and measure them simultaneously by the TIMS without a chemical separation.

Oral presentation

Preparation of uranium particles made from porous silicon particle and measurement of isotopic ratio by LG-SIMS

Tomita, Ryohei; Tomita, Jumpei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka

no journal, , 

Uranium standard particles are necessary to calibrate instruments and mass bias effect for analyzing isotopic ratio of uranium particles in secondary ion mass spectrometry (SIMS). In this study, we tried to make uranium particles which contain several picograms of uranium from porous silicon particles and solution of uranium standard powder (CRM U100). Quality of handmade uranium particles were evaluated by isotopic ratio analysis by Large Geometry (LG)-SIMS and mass bias factor calculated from handmade particles compared with the factor calculated from U100 particles. $$^{235}$$U atom% of handmade particles agreed with certified value of U100 within standard error (2$$sigma$$). However, mass bias factor calculated from handmade particles disagreed with the factor calculated from U100 particles. It is possible that electrification and uranium chemical form of handmade particles affect mass bias effect.

Oral presentation

Development of the uranium isotope ratio analysis for a single uranium particle by MC-ICP-MS using synthetic uranium particles

Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka

no journal, , 

The impact of the uranium from the process blank for a single uranium particle analysis by MC-ICP-MS was evaluated quantitatively. The synthetic uranium particles prepared by impregnating of U (NBL CRM U100) to porous silica were used in this study. A conical-bottom bottle was used to dissolve a uranium particle with a small amount of acid. The amount of $$^{238}$$U and $$^{235}$$U/$$^{238}$$U of the process blank were 0.2 pg and 0.0190, respectively. This ratio was similar to that of CRM U015 (0.0155), which was used for the detector calibration of MC-ICP-MS, indicating that the process blank was derived from ultra-trace level of uranium remining in the desolvator. The analytical results indicated that the $$^{235}$$U/$$^{238}$$U ratio could be determined accurately by MC-ICP-MS when the particle contained more than 23 pg of U.

Oral presentation

Development of Pu particle preparation technique

Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka

no journal, , 

Plutonium isotopic standard solution was impregnated into porous silica particles to prepare the Pu particles utilized for a single particle analysis for safeguards. SEM-EDS analysis showed that the prepared silica particles contained Pu. The isotope ratios of the Pu particles were determined with a multi-collector ICP-MS after decomposing individually. $$^{240}$$Pu/$$^{239}$$Pu measured ratios agreed with the certified value within the 2$$sigma$$ of standard deviation.

Oral presentation

Analytical method to remove electrostatic discharge on uranium particle based by porous silicon particle and the effect of discharge for uranium isotopic ratio analysis by SIMS

Tomita, Ryohei; Tomita, Jumpei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka

no journal, , 

In this study, we tried to solve the problem of electrostatic discharge on uranium particle based by porous silicon particle and to analyze uranium isotopic ratio of the uranium particle-based silicon by SIMS with high accuracy. Experimental results showed that primary beam of negative oxygen (O$$^{-}$$) is effective to compensate charge of uranium particle-based silicon. The negative primary beam also enable us to analyze uranium isotopic ratio of the uranium particle-based silicon within 2$$sigma$$ range of standard deviation.

Oral presentation

Overview and research finding of research group for safeguards analytical chemistry

Tomita, Ryohei; Tomita, Jumpei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka

no journal, , 

Environmental sampling for safeguards which ensure that secret nuclear activities was organized by IAEA in 1996. Research group for safeguards analytical chemistry of Japan Atomic Energy Agency is one of a network laboratories of the IAEA with highly specialized measurement capabilities and continues to analyze the environmental samples collected by the IAEA. In our poster session, we will introduce the overview of our group and research findings about the method to make working standard particles and how to measure the particles we made accurately by secondary ion mass spectrometry.

Oral presentation

Source of uranium process blank in the bulk analysis of safeguards environmental samples

Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro

no journal, , 

Low uranium process blank is needed to accurately determine uranium isotope ratios of the safeguards environmental samples. However, more than 10 pg of the uranium was sometimes observed as the process blank through the sample decomposition procedure. In this study, the sources which increase the uranium process blank through this procedure was investigated. The input of the uranium was found in the wet ashing procedure using HF. Leaching experiment of Pyrex hood covers used to collect vaporized acid showed that they contain much uranium. These results indicated that uranium supplied from Pyrex glass weathered by HF was the main source of the uranium process blank through the samples decomposition.

21 (Records 1-20 displayed on this page)